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1. Modelling considerations
The sampling design of most monitoring programs is typically tailored somewhere along a continuum 
between a configuration of perpetually fixed sampling sites and a configuration of randomly selected 
sites, depending on the purpose, resources and logistics of the program. Whist fixed sites act as their 
own baselines over time and thus provide relatively efficient means for estimating temporal trends, 
the resulting estimates are biased towards the selected locations (which may not be collectively 
representative of the broader area). By contrast, a configuration of uniquely random sites is less likely 
to be biased and hence more representative, but usually requires a considerably greater number of 
sites in order to detect change from within the noise.

The focus and challenge for the current report was to utilise a collection of datasets from a large 
number of disparate monitoring programs from around the world in order to provide estimates of 
status and trends at much broader spatio-temporal scales.

Whenever multiple data sets are integrated together (particularly if each is used to represent different 
areas), the issues of representativeness and bias are exacerbated. First, quantitative estimates are 
always driven by sample sizes. Within any well designed monitoring program, efforts are made to 
ensure the design remains relatively balanced. However, this is not the case across programs. 
Therefore, when aggregating multiple datasets at a broader scale, it is important to be able to control 
for varying samples sizes so as to minimise the risks of biasing towards the more heavily replicated 
datasets. Moreover, sample size and density does not necessarily reflect the density and distribution 
of the underlying landscape. For example, in the case of coral reefs, sampling intensity is likely to be a 
function of the relative prosperity of the surrounding populations and proximity to major population 
centers rather than the density and distribution of the reefs themselves.

Enormous (and complex) spatio-temporal models that employ full positional encoding to evaluate 
the spatial patterns between all possible pairs of sampling units (sites) have the potential to allow the 
transferal of information from the fine, observation scale measurements to the broader geographic 
scales of this report. By assuming that a response variable (such as percent live hard coral cover) 
varies continuously over an entire two-dimensional surface, such models are potentially able to 
leverage trends in areas of relatively high sample density to estimate the trends in neighbouring 
areas of sparse sampling density - albeit with greater uncertainty. However, such models proved to 
be too computationally burdensome and were incredibly difficult to tune to ensure they yield sensible 
outcomes. They also assumed that changes over space were relatively gradual and thus, can easily 
smooth over what would otherwise be considered abrupt local changes. Furthermore, incorporating 
information about the spatial distribution of reefs as well as physical barriers to auto-correlative 
process was far from trivial.
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As an alternative, we explored hierarchical models in which sampling units were progressively 
aggregated with their neighbours into larger and larger units. For example, neighbouring quadrats 
were grouped together into sites, sites into global grid locations (see below) and so on up to the 
level of the entire globe. This represents a pseudo-spatial model in that although the influence of 
neighbouring data does deteriorate along the hierarchy, it does so in increments relating to group 
membership rather than as a continuous function of spatial distance. Hence, in the case of an area 
comprising of ten sub-areas, each of the sub-areas will share some information with the other sub-
areas even though any one of them might be geographically closer to a member of another area than 
most of the sub-areas in its designated area (the classic nearest vs average neighbour conundrum). 
In any case, all attempts to fit full, global hierarchical models with the very disparate datasets proved 
very difficult to stabilise.

Instead, smaller hierarchical models (Fig. 1), fit separately to each Marine Ecosystem of the World 
(hereafter MEOW) Ecoregion1, were integrated together within a spatially weighted aggregation 
hierarchy in which individual model posteriors (annual estimates) were propagated up through the 
hierarchy. Although this approach does still have some elements of the pseudo-spatial hierarchy that 
permits data poor areas to leverage patterns off data richer areas, the leveraging is quarantined to 
within MEOW Ecoregions where processes are more likely to be homogeneous and thus the resulting 
trends are more likely to be consistent with the observed data. More details about the spatial weights 
are discussed in section 3 and the statistical models are discussed in section 4.

Figure 14.1. Schematic 
representation of the a) 
individual Marine Ecosystem 
of the World Ecoregion 
Bayesian modelling 
hierarchies and b) spatial 
aggregation hierarchy. Note 
the quadrat-level is de-
emphasized to highlight that 
the quadrat to site level 
aggregation has occurred 
outside of the statistical 
model. The  symbolise the use 
of spatial weights.

1	  Spalding, Mark D., Helen E. Fox, Gerald R. Allen, Nick Davidson, Zach A. Ferdaña, Max Finlayson, Benjamin S. Halpern, et al. 
2007. “Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas.” BioScience 57 (7): 573–83. https://doi.
org/10.1641/B570707.
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Figure 14.2. Schematic 
diagram illustrating the 
hierarchical structure relating 
the hypothetical observations 
(bottom layer) to the level of a 
10 km x10 km grid tile, Marine 
Ecosystem of the World 
(MEOW) Ecoregions, GCRMN 
Regions and Global scale. The 
grid tile layer depicts the 10 
km x10 km tile containing reef 
(red) and the voronoi polygons 
(blue lines) used to partition 
area zones of sample unit 
influence. The MEOW 
Ecoregions layer illustrates 
five fictitious Ecoregions 
which are aggregated into two 
GCRMN Regions in the layer 
above. Vertical lines illustrate 
the aggregation of data along 
the hierarchy and the 
numbers along these paths 
represent the aggregation 
weights (also tabulated). 

2. Spatial hierarchy
The pseudo-spatial hierarchy outlined above necessitates incremental jumps in spatial scale from 
the level at which observations were collected up to the Global (or even regional) scale.  However, if 
the jumps are too large, the information (temporal patterns) shared across neighbouring spatial units 
might be driven by very different underlying conditions and thus, are not appropriate.

The original datasets collated in this study were provided at scales of either quadrat/transect or 
spatial aggregations thereof. These can be group 	 ed naturally into sites (or individual reefs) as the 
first incremental scale jump; however, subsequent increments are less obvious.

There are numerous ways of grouping coral reef locations into broader geographic areas, or 
alternatively, dividing the globe up spatially. Some candidates considered were: Exclusive Economic 
Zones2, Veron Ecoregions3 or Marine Ecosystems of the World1. Consensus amongst a large panel 
of coral reef regional representatives was that the MEOW global classification system was the most 
appropriate as it has a strong bio-geographic focus capturing important, community, evolutionary, 
dispersal and isolation processes1. The MEOW Ecoregions were further grouped up into GCRMN 
subregions and regions (Tab. 1) to provide additional modelling and reporting granularity.

2	  Flanders Marine Institute. 2019. “Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones 
(200nm), Version 11.” Available online at http://www.marineregions.org/. https://doi.org/10.14284/386.
3	  Veron, J. E. N. 2000. Corals of the World. Vol. 1–3. Australian Institute of Marine Science, Townsville.
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Table 14.1. Spatial hierarchy relating Marine Ecosystems of the World Ecoregions† to GCRMN Regions and Subregions.

GCRMN Region GRCRMN Subregion MEOW Ecoregion

Australia Australia.1 142: Torres Strait Northern Great Barrier Reef
143: Central and Southern Great Barrier Reef
202: Tweed-Moreton

Australia.2 140: Arnhem Coast to Gulf of Carpenteria
141: Bonaparte Coast
144: Exmouth to Broome
145: Ningaloo
210: Shark Bay
211: Houtman

Australia.3 120: Cocos-Keeling/Christmas Island
Australia.4 151: Lord Howe and Norfolk Islands

Brazil Brazil.1 074: Fernando de Naronha and Atoll das Rocas
Brazil.2 075: Northeastern Brazil
Brazil.3 076: Eastern Brazil

077: Trindade and Martin Vaz Islands
Brazil.4 071: Guianan

072: Amazonia
Caribbean Caribbean.1 062: Bermuda

063: Bahamian
Caribbean.2 064: Eastern Caribbean

066: Southern Caribbean
Caribbean.3 065: Greater Antilles
Caribbean.4 067: Southwestern Caribbean

068: Western Caribbean
Caribbean.5 043: Northern Gulf of Mexico

069: Southern Gulf of Mexico
070: Floridian
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GCRMN Region GRCRMN Subregion MEOW Ecoregion

East Asia East Asia.1 126: Palawan/North Borneo
127: Eastern Philippines
128: Sulawesi Sea/Makassar Strait

East Asia.2 129: Halmahera
130: Papua
131: Banda Sea
133: Northeast Sulawesi
138: Gulf of Papua
139: Arafura Sea

East Asia.3 115: Gulf of Thailand
116: Southern Vietnam
117: Sunda Shelf/Java Sea
118: Malacca Strait

East Asia.4 119: Southern Java
132: Lesser Sunda

East Asia.5 109: Andaman and Nicobar Islands
110: Andaman Sea Coral Coast
111: Western Sumatra

East Asia.6 112: Gulf of Tonkin
113: Southern China
114: South China Sea Oceanic Islands

East Asia.7 121: South Kuroshio
ETP ETP.1 060: Cortezian

061: Magdalena Transition
164: Revillagigedos
165: Clipperton

ETP.2 166: Mexican Tropical Pacific
167: Chiapas-Nicaragua
168: Nicoya

ETP.3 170: Panama Bight
171: Guayaquil

ETP.4 169: Cocos Islands
172: Northern Galapagos Islands
173: Eastern Galapagos Islands
174: Western Galapagos Islands

PERSGA PERSGA.1 087: Northern and Central Red Sea
PERSGA.2 088: Southern Red Sea
PERSGA.3 089: Gulf of Aden
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GCRMN Region GRCRMN Subregion MEOW Ecoregion

ROPME ROPME.1 090: Arabian (Persian) Gulf
ROPME.2 091: Gulf of Oman
ROPME.3 092: Western Arabian Sea

South Asia South Asia.1 106: Chagos
South Asia.2 105: Maldives
South Asia.3 103: Western India

104: South India and Sri Lanka
South Asia.4 107: Eastern India

108: Northern Bay of Bengal
WIO WIO.1 093: Central Somali Coast

094: Northern Monsoon Current Coast
095: East African Coral Coast

WIO.2 096: Seychelles
WIO.3 097: Cargados Carajos/Tromelin Island

098: Mascarene Islands
WIO.4 099: Southeast Madagascar

100: Western and Northern Madagascar
WIO.5 101: Bight of Sofala/Swamp Coast

102: Delagoa

† Spalding, Mark D., Helen E. Fox, Gerald R. Allen, Nick Davidson, Zach A. Ferdaña, Max Finlayson, Benjamin S. Halpern, et al. 
2007. “Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas.” BioScience 57 (7): 573–83. https://doi.
org/10.1641/B570707.

The jump in spatial scale from Site (reef) to MEOW Ecoregion can be very large and encompass a wide 
range of influential processes and drivers. Therefore, we sought an additional intermediate scale. 
Such a scale could be based on collections of reefs or broad communities, although such information 
was not universally available. An intermediate scale could also be achieved by dividing the globe up 
into an array (grid) of cells or tiles of a constant size. Moreover, the use of grid tiles provided a way of 
abstracting away design differences between fixed and random annual site selections thus, providing 
a mechanism by which multiple sampling designs could be incorporated in the one model.

3. Spatial Weights 
In order to help maximise the chances that the hierarchical aggregations were reflective of broad 
spatial patterns and not heavily biased by sampling effort alone, the aggregations were weighted by 
the proportion of reef area represented by each spatial unit.

Estimating the distribution and area of global coral reefs is a challenging problem. As is the case with 
sampling effort consistency across the globe, the granularity and accuracy of coral reef mapping 
varies substantially from region to region. New initiatives such as the Allen Coral Atlas will help to 
address these challenges as satellite imagery improves and algorithms mature and achieve recognition 
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and acceptance within the broader scientific community. However, for the purposes of weighting 
analyses underpinning this Status of Coral Reefs of the World: 2020 report, Tropical Coral Reefs of the 
World4,5 digital shapefiles were used to provide a potentially less biased and more uniform method 
of estimating coral reef area. The intermediate spatial scale between observed sites and MEOWs was 
provided by generating a 10 km x10 km grid of tiles across the entire globe and assigning a unique 
identifier to each tile.

3.1	 Tile level weights
All observed site level locations were assigned to a grid tile on the basis of nearest neighbour within 
10 km. To estimate the amount of reef area within each MEOW that was represented by each of the 
observed sites, voronoi polygons were generated from the unique site locations and overlayed onto 
the grid (Fig. 3). The reef area associated with each voronoi cell was then expressed as a proportion 
of the total MEOW reef area, thereby representing the relative weight that each grid tile should carry 
in the analyses.

Figure 14.3. Illustration of voronoi 
polygons overlayed on the 10 km x10 
km grid and reefs (grey). Shaded grid 
tiles represent grid tiles containing 
observed sites and colour of the grid 
tile shading represents the relative 
weights (proportion of reef area in 
each grid tile).

4	  World Resources Institute. Tropical Coral Reefs of the World (500-m resolution grid), 2011. Global Coral Reefs composite 
dataset compiled from multiple sources for use in the Reefs at Risk Revisited project incorporating products from the 
Millennium Coral Reef Mapping Project prepared by IMaRS/USF and IRD.

https://datasets.wri.org/dataset/tropical-coral-reefs-of-the-world-500-m-resolution-grid 
5	  Burke, L., K. Reytar, M. Spalding, and A. Perry. 2011. “Reefs at Risk Revisited.” Washington, DC, USA: Word Resources Institute.
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3.2	 Larger scale weights
The weights (relative contributions) of each MEOW Ecoregion in aggregating up to GCRMN subregions 
was calculated as the proportion of MEOW reef area within each GCRMN subregion (see Fig. 4). 
Similarly, GCRMN subregion and region weights (used in aggregations to GCRMN Region and Global 
levels respectively) were calculated from the respective proportions of reef areas in GCRMN regions 
and globally.

Figure 14.4. Illustration of the relative 
reef area represented by each 10 km 
x10 km grid tile within three example 
MEOW Ecoregions in the GCRMN 
Australia Region. The colour of reef fill 
is proportional to the relative area of 
reef in the MEOW.

4. Statistical Models 
Live hard coral cover and algal cover were calculated by summing observation level data across 
associated taxonomic groupings.

Separate MEOW Ecosystem Bayesian hierarchical models were constructed within the stan statistical 
modelling platform6 via the rstan7 interface. Each model comprised a model matrix representing year 
dummy coded as cell means contrasts, a model matrix representing Dataset coded as sum to zero 
contrasts as well as varying effects representing the hierarchical structure of Sites nested within grid 
tiles (Fig. 1). Weights were also applied to the grid tiles in order to allow the influence of each grid tile 
to be proportional to the relative area of reef present within each grid tile.

Separate models were fitted to explore trends in live hard coral cover (HCC) and algae cover (A). In each 
case, cover was modelled against a beta distribution (logit link). Cover values of either 0 or 1 were first 

6	  Carpenter, Bob, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang 
Guo, Peter Li, and Allen Riddell. 2017. “Stan: A Probabilistic Programming Language.” Journal of Statistical Software, Articles 76 
(1): 1–32. https://doi.org/10.18637/jss.v076.i01.
7	  Stan Development Team. 2019. “RStan: The R Interface to Stan.” http://mc-stan.org/.
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shrunk by 0.01 for compatibility with the beta distribution. Weakly informative priors were applied to 
the beta shape parameters as well as the varying effects parameters and their standard deviations.

In order to impute missing year combinations and smooth over short-term oscillations in estimates 
resulting from short-term fluctuations in sampling designs and data availability, priors on Year effects 
(except that associated with the first observed year of data in a MEOW Ecoregion) were weakly 
informative normal priors centred around the posterior of either previous Year (in the case of Years 
after the initial observed year) or after (in the case of Years prior to the initial observed year). For the 
initial observed Year, standard (zero centred) weakly informative priors were applied.

The Dataset effects were included to act as proxies for all the many and varying ways that different 
datasets differ including depth, sampling unit type (quadrats, transects, etc) and observer experience. 
Weakly informative normal priors were applied to the Dataset effects.

The statistical models can be summarised as:

where y is the cover of either live hard coral or 
algae, βy and βd represent the effects of Year 
and Dataset respectively, Xy and Xd represent 
cell-means Year and sum-to-zero Dataset model 
matrices respectively, γs and γt are the sum-to-
zero varying effects, and Zs and Zt represent the 
Site and grid tile codes respectively. oy 
represents the initial observed Year within the 
MEOW Ecoregion and i is a year iterator.

Trends in hard coral cover to algae ratio (HCC:A) 
employed structurally very similar models 
to those described above, yet the ratio was 
modelled against a Gaussian distribution.

All models were run with 10,000 no-u-turn MCMC iterations, a warmup of 5000 and a thinning rate 
of 5 for each of three chains (each with random initial values). Diagnostics indicated that all chains 
converged on stable, well mixed posteriors (Rhat values < 1.05) and low MCMC sample auto-correlation 
(< 0.2).

4.1	 Hierarchical aggregation
The full posteriors for the Year effects (on the logit scale) of each MEOW Ecoregion were averaged 
together within each GCRMN subregion (Fig. 2). The resulting posteriors were then summarised by 
back-transforming to the response scale (inverse logit transform in the case of beta models) and 
calculating the means and highest probability density intervals (80% and 95%). Similarly, the un-
standardised GCRMN subregion posteriors were aggregated (with weights) up to GCRMN Region and 
then Global level (Fig. 2).

4.2	 Half-decadal pairwise contrasts
The modelled trends in the covers of live hard coral and algae provide a visual representation of the 
annual fluctuations within the long-term patterns. In addition, there was a need to be able to provide 
quantified estimates of the degree of medium to long term changes over time. To achieve this, we 
combined together the modelled posteriors (hard coral and algae separately) into half-decadal time 
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units (working backwards from the most recent year of available data) and compared the three most 
recent half-decadal time units (2004-2009, 2010-2014 and 2015-2019) together in a pairwise manner. 
From each pairwise contrast, we calculated the exceedance probabilities of both positive and negative 
changes as well as the associated mean absolute and percentage changes.

Half-decadal time units were chosen as they provided a convenient way to evenly partition the time 
since the last GCRMN Status of Coral Reefs of the World report in 2008, encompassed the time span 
for which reefs where more extensively monitored and provided a good compromise between short 
and long-term intervals. Whilst it is recognised that the selected half-decadal time boundaries might 
mask the impact of some local disturbance events, we considered that it was important to maintain 
consistent time units across the entire scope of the analyses for the purpose of comparability of 
discussions.

4.3	 Proportion of sampling units not recovering
Disturbances are a natural driver within any ecosystem. Nevertheless, over time, a healthy and resilient 
ecosystem would be expected to recover from disturbances. For sampling units (typically quadrats 
or transects) that were repeatedly monitored for at least 15 years, we enumerated the number of 
these units that had experienced a relative decline in raw (un-modelled) hard coral cover of at least 
20 percent. We then calculated the percentage of these units that had subsequently recovered to 
within 90 percent of their pre-decline cover. To provide greater insights about the changes within 
these units, we also calculated the mean maximum absolute and percentage coral cover declines 
as well as the long-term (difference in cover between first and last sampling time) mean maximum 
absolute and relative declines in coral cover. Similar analyses were performed on incidences of algae 
cover increases and subsequent declines.

For the above calculations it was critical that only fine-scale sampling units (e.g. quadrats/transects) 
were used rather than higher scale locations such as Sites. This is because benthic data can vary 
enormously even at fine scales and thus comparing Site level data that comprise different sampling 
units over time will likely yield very distorted apparent declines and recoveries.

4.4	 Sea Surface Temperature Anomalies
The above analyses provided the first large scale, quantitative estimates of the status and trends in 
the covers of live hard coral and algae. The resulting trends showed clear indications of fluctuations 
in hard coral cover at a global scale. Since numerous incidences of coral cover decline (both regionally 
and globally) had reportedly been attributed to coral bleaching resulting from elevated sea surface 
temperatures, we explored associations between the global trends in live hard coral cover and global 
trends in sea surface temperature and other climatic indices (e.g. ENSO).

HadSST4 is a global dataset that provides gridded (5x5 degrees) sea surface temperature anomalies 
across the world as well as global monthly averages8. The HadSST4 data were restricted to the temporal 
range of 1977 to 2020 so as to coincide with the availability of observed benthic data collated for this 
report. An 18 month rolling mean was used to smooth the trend in HadSST4 anomaly. The relative rate 
of change in smoothed HadSST4 per unit of time was estimated by calculating derivatives via finite 
differences.

8	  Kennedy, J. J., N. A. Rayner, C. P. Atkinson, and R. E. Killick. 2019. “An Ensemble Data Set of Sea‐surface Temperature Change 
from 1850: The Met Office Hadley Centre HadSST.4.0.0.0 Data Set.” Journal of Geophysical Research: Atmospheres 124: 7719–63. 
https://doi.org/10.1029/2018JD029867.
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After overlaying the smoothed HadSST4 trend and associated derivatives over the trend in global 
hard coral cover, a number of features became apparent. Periods of coral cover decline appeared 
to be associated with either smoothed HadSST4 anomalies that exceeded 0.45 or when the rate of 
smoothed HadSST4 change exceeded 0.15 for two consecutive months. Whilst these are not strictly 
statistical tests, they do provide the basis of future statistical explorations.

The above associations were communicated visually by plotting smoothed HadSST4 anomaly trend 
over the trend in global hard coral cover and overlaying vertical light red bars (50% opacity) to indicate 
when the rate of smoothed HadSST4 change exceeded 0.15 for two consecutive months and vertical 
dark red bars (20% opacity) to indicate when the smoothed SST anomaly exceeded a value of 0.45.




